ETY906 – Mechanical behavior of Composite Materials

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF	ENCINEEDINC		
ACADEMIC UNIT	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	ETY906 SEMESTER 9		9	
COURSE TITLE	Mechanical behavior of Composite Materials			
INDEPENDENT TEACHING ACTIV	VITIES if credits are awarded			
for separate components of the cour				
exercises, etc. If the credits are awarde				
give the weekly teaching hours	rs and the total credits HOURS			
Lectures / Case Studies		3	3	
Add rows if necessary. The organization	of teaching and	l the teaching		
methods used are described in detail at (d).				
COURSE TYPE	Specialized general knowledge			
general background, special background,				
specialized general knowledge, skills				
development	Markenia of Materiala Comparity Materials I. 1			
PREREQUISITE COURSES:	Mechanics of Materials, Composite Materials, Laboratory			
	of Materials VII			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	NO			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	http://users.uoi.gr/csmlab/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The scope of the course is the study of the response of composite materials in loading environments. The course provides in depth knowledge in intrinsic properties of advanced composite materials and are related to the interaction of the distinct phases, the response of anisotropic materials in relation to the loading axis and the methodologies/ standards for the design requirements due to this anisotropy. By successfully completing the course, the student should know:

- The meaning of anisotropy and its relation to the mechanical behavior of materials;
- The basic notions related to the laminate design of composite materials;
- The relations that govern the phase interaction; the basic models for simple symmetries, e.g. unidirectional composite materials;
- The response of the materials in different loading conditions in relation to the material symmetry;

• The fundamental mechanical tests and standardisation of composite materials in relation to the international standards.

General Competences					
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma					
Supplement and appear below), at which of the following does the course aim?					
Search for, analysis and synthesis of data and information,	Project planning and management				
with the use of the necessary technology	Respect for difference and multiculturalism				
Adapting to new situations	Respect for the natural environment				
Decision-making	Showing social, professional and ethical responsibility				
Working independently	and sensitivity to gender issues				
Team work	Criticism and self-criticism				
Working in an international environment	Production of free, creative and inductive thinking				
Working in an interdisciplinary environment					
Production of new research ideas	Others				
• Search, analysis and synthesis of information and data with the application of the					

- required technologies
- Adapt to novel enviroments
- Production of novel research ideas and themes
- Instigation of free, productive and creative thinking
- (3) SYLLABUS

The course presents the necessary principles that govern the study of mulri phase materials and their response to loading environments. The course focuses in advanced composite naterials with specific reinforcement geometry. The content of the lesson is as following:

- Introduction, general principles, definitions and categorisation, composite properties and phase properties;
- Matrix, reinforcing phase and interface, geometry of reinforcing phase, design;
- Role of the interface, composites with metal/ organic/ ceramic matrix;
- Structure-property relation, stiffness-strength, stress-strain relation, isotropic materials, principle stresses and axes
- Failure criteria, anisotropic materials/ unidirectional composites: stress-strain relations, out of axis loading, stiffness of laminates
- Micromechanics and micromechanics of unidirectional composites, micromechanical models for stiffness-strength, long vs. short fibre composites, critical length of reinforcement, relation to macroscopic properties
- fracture and energy absorption mechanisms, crack initiation and propagation, slow crack propagation, crack types (I, II, mixed), toughness enhancement mechanisms
- Mechanical testing of anisotropic laminates: tension, compression, flexure, shear, toughness, environmental testing

DELIVERY Face-to-face, Distance learning, etc.	In class General theory and tutoring classes		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	No		
TEACHING METHODS The manner and methods of teaching are described in detail.	Activity Lectures	Semester workload 39	

(4) TEACHING and LEARNING METHODS - EVALUATION

Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Non supervised student study Course total	36 75	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	LANGUAGE OF EVALUATION: Greek METHOD OF EVALUATION: Individual written assignments and /or written exams in the end of the semester based on theory and exercises that are presented in the course lectures		

(5) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

- Σύνθετα υλικά, Γ. Παπανικολάου, Δ. Μουζάκης
- Σύνθετα Υλικά, Κ. Μπέλτσιος
- Materials Science and Engineering: An Introduction (5th edition), chapter 17, William D. Callister
- Composite materials: Engineering and Science, F. L. Matthews and R. D. Rawlings